SYNTHESIS OF OLIGOSACCHARIDE FRAGMENTS OF THE REPEATING UNIT OF Salmonella kentucky O-SPECIFIC POLYSACCHARIDE AND CONVERSION OF THE OLIGOSACCHARIDES INTO THE GLYCOSYL PHOSPHATES*

VLADIMIR I. TORGOV, CAMELIA A. PANOSSIAN, AND VLADIMIR N. SHIBAEV

N. D. Zelinsky Institute of Organic Chemistry, Academy of Sciences of the U.S.S.R., Moscow (U.S.S.R.)

(Received April 30th, 1986; accepted for publication, October 2nd, 1986)

ABSTRACT

 α -D-Man- $(1\rightarrow 2)$ - α -D-Man- $(1\rightarrow 3)$ -D-Gal, a structural fragment of the main chain of Salmonella serogroups C_2 and C_3 O-specific polysaccharides, and the isomer with the central residue β have been synthesised, as have some oligosaccharides related to the structure of the O-specific polysaccharide of S. kentucky (serogroup C_3), namely, α -D-Glc- $(1\rightarrow 4)$ -D-Gal, α -D-Man- $(1\rightarrow 3)$ - $[\alpha$ -D-Glc- $(1\rightarrow 4)$]-D-Gal, and α -D-Man- $(1\rightarrow 2)$ - α -D-Man- $(1\rightarrow 3)$ - $[\alpha$ -D-Glc- $(1\rightarrow 4)$]-D-Gal, and the isomers with the D-Glc unit β . Each oligosaccharide was converted into the α -glycosyl phosphate.

INTRODUCTION

Synthetic polyprenyl pyrophosphate sugars, first prepared by Warren and Jeanloz¹, are useful for investigating the mechanism of the piosynthesis of bacterial polysaccharides and studying the specificity of the enzymes involved in this process². The phosphoimidazolidate method for the synthesis of these compounds³ allows the preparation of a wide range of polyprenyl pyrophosphate oligosaccharides, precursors of the O-specific polysaccharides of Salmonella serogroups B and E, and their derivatives^{3,4}. These derivatives enable a chemical–enzymic synthesis of the polysaccharides^{5,6}, demonstration of the incorporation of modified monosaccharide residues into the polymers^{6–8}, the preparation of polysaccharides with glucose residues in the side chains⁹, and the demonstration of the sensitivity of glycosyl transferases towards the configuration of glycosidic bonds in the oligosaccharide chain of precursors¹⁰.

The present work is part of a programme on the synthesis and study of biosynthetic precursors of *Salmonella* serogroups C_2 and C_3 O-specific polysaccharides. The main chain of these polysaccharides comprises the tetrasaccharide repeating-unit 1. In the serogroup C_3 bacterium S. kentucky, the main polysaccharide

^{*}Dedicated to Roger W. Jeanloz.

chain is substituted with residues of α -abequose (at HO-3 of rhamnose) and α -D-glucose (at HO-4 of galactose)¹¹.

$$\beta$$
-L-Rha-(1 \rightarrow 2)- α -D-Man^{II}-(1 \rightarrow 2)- α -D-Man^I-(1 \rightarrow 3)-D-Gal

During an investigation of the biosynthesis of these polymers¹², it was shown that assembly of the repeating unit starts with the formation of polyprenyl pyrophosphate galactose and includes the sequential transfer of mannose and rhamnose residues. The resulting tetrasaccharide derivative can be enzymically polymerised without incorporation of side chains. Syntheses of the polyprenyl pyrophosphate derivatives of α -D-galactose^{1,3} and D-mannosyl-D-galactose, a disaccharide fragment of 1¹³, have been reported. We now report syntheses of α -D-Man-(1 \rightarrow 2)- α -D-Man-(1 \rightarrow 3)-D-Gal (2), the trisaccharide fragment of the main polysaccharide chain, and its isomer α -D-Man-(1 \rightarrow 2)- β -D-Man-(1 \rightarrow 3)-D-Gal (3).

In order to study the enzymic glycosylation during the assembly of the polymer repeating-unit, the oligosaccharide precursors with the glycosyl side-chain incorporated have been synthesised. For this purpose, the disaccharide 4 and oligosaccharides 5 and 6 derived therefrom were synthesised, as well as the analogous compounds 7–9 containing a β -D-Glc residue.

$$α$$
-D-Glc-(1→4)-D-Gal

3

5

 $R = α$ -D-Man-(1→

6

 $R = α$ -D-Man^{II}-(1→2)- $α$ -D-Man^I-(1→

 R

β-D-Glc-(1→4)-D-Gal

7

 $R = H$

8

 $R = α$ -D-Man-(1→

 R

9

 $R = α$ -D-Man^{II}-(1→2)- $α$ -D-Man^{II}-(1→2)- R

The synthetic oligosaccharides were converted into the corresponding α -glycosyl phosphates which may be used as starting materials for the synthesis of polyprenyl pyrophosphate oligosaccharides.

RESULTS AND DISCUSSION

The disaccharide synthons¹³ 10 and 11 were used for the synthesis of trisaccharide 2 and its β -isomer 3.

2-O-Acetyl-3,4,6-tri-O-benzyl-α-D-mannopyranosyl chloride¹⁴ (12) reacted slowly under Helferich conditions [acetonitrile, Hg(CN)₂] with 10 and 11 to give the trisaccharide derivatives 13 (62%) and 14 (65%), respectively. Dry reagents and solvents were essential for good results. The structures of 13 and 14 were confirmed by their ¹H- and ¹³C-n.m.r. spectra (see Experimental). Zemplén

deacetylation of 13 and 14 gave 15 and 16, respectively. Catalytic hydrogenolysis of 15 and 16, acetylation, and then mild acetolysis gave the undeca-acetates (17 and 18) of 2 and 3, respectively.

A partially protected derivative of the disaccharide 4 has been described¹⁵, but the combination of protecting groups used (6-p-nitrobenzoate in the Glc residue, 3-benzoate in the Gal residue, with all the other hydroxyl groups benzylated) was not satisfactory for the planned synthesis of 5 and 6. A strategy using BzO-3 as a temporary protecting-group in the Gal residue with the other hydroxyl groups benzylated was explored. Thus, glycosylation of benzyl 3-O-benzoyl-2,6-di-O-benzyl- β -D-galactopyranoside¹⁵ (20) with 2,3,4,6-tetra-O-benzyl- α -D-glucopyranosyl bromide, under the conditions described by Lemieux et al.¹⁶, gave only traces of the disaccharide derivative, whereas the use of AgSO₃CF₃ as a promotor and acceptor of HBr gave a large amount of by-products. However, when the glycosylation was performed in CH₂Cl₂ in the presence of Hg(CN)₂, 86% of a 1:2 mixture of the α - (21) and β -disaccharide derivatives (22) was obtained.

Compounds 21 and 22 were isolated by h.p.l.c., and the ¹H-n.m.r. signals for H-3 of the Gal residues were at low field, indicating benzoylation at C-3. In the ¹³C-n.m.r. spectra of 21, the signal at 99.2 p.p.m. was characteristic of α -Glc and that at 101.95 p.p.m. of β -Glc for 22.

Zemplén debenzoylation of 21 and 22 gave the respective monohydroxy derivatives 23 and 24, and catalytic hydrogenolysis then gave the disaccharides 4 and 7, the structures of which were evident from their 13 C-n.m.r. spectra (Table I). Thus, for 4, the signal of C-1 at δ 101.3 proved the Glc moiety to be α . The series of signals corresponding to α - and β -Gal were compatible only with its glycosylation at C-4. Likewise, for 7, the signal at δ 104.9 showed the Glc unit to be β and substitution at C-4 was proved by the signals of the reducing Gal unit.

The trisaccharide derivatives 25 (50%) and 26 (60%) were obtained via mannosylation of 23 and 24 with 12 in the presence of $Hg(CN)_2$.

The ¹³C-n.m.r. spectra of **25** contained easily identified signals for C-1 of β -Galp (δ 103.2), α -Glcp (δ 99.3), and α -Manp (δ 94.3) residues, and of the glycosylated carbon atoms of the β -Galp residue (δ 81.7 and 81.2). The spectrum of **26** contained signals for C-1 of β -Galp (δ 103.9), β -Glcp (δ 102.9), and α -Manp (δ 97.4), and two signals of glycosylated atoms of the galactose residue (δ 84.7 and 82.8).

Saponification of 25 and 26 gave the hydroxy derivatives 27 and 28, and catalytic hydrogenolysis then afforded the trisaccharides 5 and 8 in high yield. The 13 C-n.m.r. spectra of 5 contained signals at δ 101.3 and 101.4 (due to the influence of the anomeric configuration of the reducing unit) which were assigned to C-1 of

TABLEI

ASSIGNME	ASSIGNMENTS" OF THE 12C-N.M.R. RESONANCES FOR THE OLIGOSACCHARIDES 4-9	C.N.W.R	. RESONAL	CES FOR	THE OLIC	OSACCHA	ARIDES 4	<u>م</u>							
Com- pound	Residue	C-1	C-2	<i>C:3</i>	C-4	C5	Q-Q	Com- pound	Residue	C-1	C-2	<i>C-3</i>	C-4	C-3	C-6
4	a-D-Gic	101.3	73.1	74.0	9.02	73.1	61.4	7	B-D-Gle	104.9	74.9	77.0	70.9	77.0	62.1
	a-D-Gal	93.6	70.0	69.75	79.95	72.1	61.4		A-D-Cal	97.6	73.6	(71.0) 74.4	78.6	(70.8) 75.5	61.9
	B-D-Gal	97.4	73.1	73.6	78.7	76.3	61.4		i i	?				<u>!</u>	Ì
			(73.6)	(73.1)				90	α-D-Man	98.2 98.5	71.4	71.6	67.8 67.9	73.9	62.0
W	α-D-Man	97.6	71.5	71.7	67.85	73.65	62.1		B-D-Glc	104.4	74.6	77.0	71.0	76.8 (77.0)	62.0
	a-D-Glc	101.3	73.1 (73.3)	74.0	70.5	73.3 (73.1)	61.4		a-D-Gal	93.6	68.3	75.4 (74.2)	74.2 (75.4)	, 71.2	62.0
	a-D-Gal	93.4	68.1	73.8 (75.5)	75.5 (73.8)	72.4	61.8		β-D-Gal	97.6	71.7	78.7	73.4	75.5	62.0
	β-D-Gal	97.8	71.5	7.1	74.1	76.4	61.4	⊘ \	α-D-Man ⁿ	104.3 (104.6)	71.1	71.6	68.0 (68.3)	73.8	62.1 (62.7)
9	α -D-Man ^{II} α -D-Man ^I	103.65	71.2	71.55	68.3 68.3	73.8	62.1 62.5		α-D-Man¹	96.3	81.2	70.9	68.3 (68.0)	74.3	(62.1)
		97.0	73.3	73.8	70.4	73.4	61.3		B-D-Glc	104.6	74.5	77.2	71.05	76.8	62.1
		102.3	(73.4)	:	,	(73.3)			a-p-Gal	93.5	68.3	75.4	74.75	71.1	62.1
	α -D-Gal β -D-Gal	93.5 97.75	68.2	74.7 78.4	77.9	72.1	62.1 61.9		β-D-Gal	97.5	7.17	(74.75) 78.1	(75.4) 74.5	75.4	62.1

"Assignments may be interchanged with those in brackets.

 α -Glcp, and the signal at δ 97.6 was characteristic for C-1 of α -D-Manp linked to C-3 of D-Gal¹⁷. Low-field signals at δ 73.8 and 75.5 (α -series) or 77.1 and 74.1 (β -series) indicated 3,4-disubstitution of the Galp residue. Similar signals were present in the spectrum of **8**, except that for C-1 of α -D-Glcp which was replaced by one at δ 104.4 characteristic of C-1 of β -D-Glcp.

Mannosylation of the trisaccharide derivatives 27 and 28, using 12 under the conditions of the trisaccharide synthesis, gave the tetrasaccharide derivatives 29 (80%) and 30 (53%), respectively. The 13 C-n.m.r. spectra of 29 and 30 contained signals for C-1 of Glcp (α for 29 and β for 30), β -Galp, α -Manp^I, α -Manp^{II}, C-2 substituted Man^I, and 3,4-disubstituted Gal (see Experimental).

Zemplén saponification of **29** and **30** gave monohydroxy derivatives **31** and **32**, respectively, catalytic hydrogenolysis of which gave high yields of the tetrasaccharides **6** and **9**. The structures of **6** and **9** were proved by the 13 C-n.m.r. data. Comparison of the spectra of **6** and **9** clearly showed the attachment in **6** of an additional α -D-Manp residue to C-2 of an α -D-Manp residue with characteristic signals at δ 102.6 (C-1 of Man^{II}) and 80.3 (C-2 of Man^I). An analogous conclusion may be drawn from comparison of the spectra of **9** and **8**.

Oligosaccharides 4-9 were converted into the fully acetylated derivatives by treatment with acetic anhydride in pyridine.

Treatment of the undeca-acetates (17 and 18) of the linear trisaccharides 2 and 3 with anhydrous $\rm H_3PO_4$ under conditions similar to MacDonald procedure^{18,19}, followed by deacetylation with LiOH and ion-exchange chromatography of the products, yielded the glycosyl phosphates 39 (65%) and 40 (51%), respectively.

$$\alpha$$
-D-Man-(1 \rightarrow 2)- α -D-Man-(1 \rightarrow 3)- α -D-Gal-P α -D-Man-(1 \rightarrow 2)- β -D-Man-(1 \rightarrow 3)- α -D-Gal-P 40

The structures of 39 and 40 were confirmed by sugar and acid-labile-phosphate analyses, mobilities in paper electrophoresis, and the 13 C-n.m.r. data (Table II). The 13 C signals at δ 95.0 and 68.15 for 39 and δ 95.5 and 69.25 for 40, which

TABLE II

ASSIGNMENTS4 OF ¹³C-n.M.R. RESONANCES FOR THE GLYCOSYL PHOSPHATES **39–46**

Com- pound	Residue	C-1	C-2	C-3	C-4	C-5	C-6	J,p J2,p	Com- pound	Residue	C-I	C-2	C:3	C-4	C-S	C-6	C-6 J _{I,P} J _{2,P}
39	α-D-Man ^{II} 103.2	103.2	70.9	71.2 (70.9)	67.9	73.55	62.1		43	α-D-Man α-D-Glc	97.9	71.45	71.7	68.0	73.7	62.1	
	α-D-Man [‡] 95.4	95.4	(70.8) 80.05	8.07 8.09 (20.9)	6.79	74.2	61.9			α-D-Gal	95.7	(73.1) 68.4	74.3 (75.5)	75.5 (74.3)	(73.2) 73.1	61.4	5.0 7.0
	α-D-Gal	95.0	68.15	74.5	66.2	71.9	62.2	5.0 7.0	4	α-D-Man	98.1	71.3	71.7	7.79	73.6	61.8	
4	α-D-Man	102.6	71.25	72.3	6.79	73.5	62.1			p-D-Gic α-D-Gal	95.2	/4.2 68.45	75.5	74.3	71.15	61.8 61.8	4.9 7.3
	β-D-Man 102.1 76.8 (102.6) (77.7)	102.1	76.8	74.9	68.2	7.77	62.2		45	o-n-Man ^{II} 103 2	103.2	71.3	(C+1)	(5.5.7)	73.8	1 09	
	α-D-Gal	95.5	69.25	80.7	70.35	71.55	62.3	5.0 7.0	<u> </u>			1		*	?	į	
										α-D-Man ^I	97.1	79.2	70.6	68.3	74.4	62.2	
41	a-D-Glc	101.3	73.3	74.0	70.8	73.0	61.7			a-D-Oic	101.7	(73.3)	0.57	71.0	(73.2)	01.0	
	a-D-Gal	95.5	(73.0) 70.1	70.35	80.0	(73.3) 72.9	61.7	5.5 7.0		α-D-Gal	95.1	68.75	75.6	77.2	72.8	61.5	5.0 7.0
42		104.6	74.7	76.8	70.7	76.8			94	α-D-Man ^{II} 104.2 (104.6	104.2 (104.6)	71.1	71.6	68.2	73.8	62.2	
		95.1	70.1	70.8	(70.8) 79.3	71.8	(61.8) 61.8	5.5 7.0		α-D-Man ^I β-D-Glc	96.8 104.6	81.0	71.0	68.2 71.0	74.5	62.5	
				(70.7)			(61.9)				(104.2)	ļ	(76.8)	!	(77.2)		1
										a-D-Gal	95.4	68.7	75.3	74.5	71.8	62.2	5.5 7.0
				-									(6.4.2)	(6.67)			

^aAssignments may be interchanged with those in brackets.

were split by coupling with ³¹P (J 5.0 and 7.0 Hz, respectively), are characteristic for C-1 and C-2 of α -D-Gal-P fragment 13,20. Comparison of the spectra with the data for the corresponding disaccharide phosphates¹³, methyl α - and β -D-mannopyranoside, and methyl 2-O-α-D-mannopyranosyl-D-mannopyranoside¹⁴ shows that the observed pattern is compatible only with an α -(1 \rightarrow 2) linkage between Man^{II} and Man^I residues and an α -(1 \rightarrow 3) linkage between Man^I and Gal (cf. ref. 17 for a discussion of glycosylation effects). For 39, the characteristic signals were at δ 103.2 (C-1 of Man^{II} linked to C-2 of α-D-Man^I), 95.4 (C-1 of Man^I linked to C-3 of D-Gal), 80.05 (C-2 of D-Man^I), and 74.5 (C-3 of D-Gal substituted with α -D-Man); signals near δ 77 (characteristic of C-5 of β -D-Manp) were absent. For 40, the signals at δ 102.6 and 102.1 clearly showed the presence of α -D-Man^{II}-(1 \rightarrow 2)-D-Man^I and β -D-Man¹-(1→3)-D-Gal linkages¹⁷. The downfield shift of the C-3 signal (80.7 p.p.m.) for D-Gal is characteristic for substitution with a β -D-Manp residue¹⁷, the signals at δ 77.7 and 76.8 correspond to C-2 and C-5 of a 2-substituted β -D-Man^I residue, and the absence of additional signals in this region shows the Man^{II} residue to be α . Treatment of the octa-acetates 33 and 34, the undeca-acetates 35 and 36, and the tetradeca-acetates 37 and 38 with H₃PO₄, as described for 17 and 18, gave 50-74% of the glycosyl phosphates 41-46.

The structures of glycosyl phosphates 41–46 were confirmed as for 39 and 40. The presence in each of the ¹³C-n.m.r. spectra of signals for C-1 (δ 95.1–95.7) and C-2 (δ 70.1 for 41 and 42, and 68.3–68.7 for 43–46) of Gal split by coupling with ³¹P clearly showed ^{13,20} the glycosyl phosphates to be α . The other signals in the spectra of 41–46 were similar to those for oligosaccharides having the α configuration at the reducing end (cf. Tables I and II), thus confirming the absence of any changes in the oligosaccharide moieties.

EXPERIMENTAL

Optical rotations were determined with a Perkin-Elmer 141 polarimeter at $20 \pm 2^{\circ}$. N.m.r. spectra were recorded with a Bruker WM-250 spectrometer for solutions in CDCl₃ (internal Me₄Si) and D₂O (internal MeOH). T.l.c. was performed on Kieselgel G-60 (Merck), using A, benzene-ethyl acetate (9:1); B, benzene-ether (8:2); C, benzene-ethyl acetate (2:3); D, benzene-ether (7:3); E,

ethyl acetate-methanol (7:3), F, chloroform-methanol-water (60:25:4); and detection by charring with sulfuric acid. Column chromatography was performed on Silpearl (Chemapol. C.S.S.R.). Preparative h.p.l.c. was performed on a column $(250 \times 25 \text{ mm})$ of Silasorb 600, 10 μ (Chemapol, C.S.S.R.), using benzene-ethyl acetate (97:3) at 10 mL/min and detection with a Knauer (F.R.G.) refractometer. Ion-exchange chromatography was performed on a column (100 × 3 mm) of DA-X8 11F resin, using 0.5M sodium borate buffer (pH 8.8) at 18 mL/h and 70°. The eluate was monitored with the orcinol-sulfuric acid reagent. Monosaccharide analysis was performed for oligosaccharides and glycosyl phosphates after hydrolysis in M HCl for 16 h at 100°. Ion-exchange chromatography of glycosyl phosphates was performed on a column (250 × 9 mm) with AG-X8 resin (-400 mesh) (Bio-Rad) at 5 mL/min, using a linear gradient of water →0.1M NH₄HCO₃ (250 mL in each vessel). The eluate was monitored with the orcinol-sulfuric acid reagent, acidlabile phosphate was determined²¹, and paper electrophoresis was performed⁴. Solutions were concentrated in vacuo at 40°. Acetonitrile and dichloromethane were distilled twice over CaH₂. For polarimetry, the concentration of glycosyl phosphates was measured on the basis of the content of acid-labile phosphate.

Glycosylation reactions were performed using a high-vacuum line for drying reagents and transfer of solvent essentially as described by Byramova et al.²², except that smaller reaction vessels were used.

3-O-[2-O-(2-O-Acetyl-3,4,6-tri-O-benzyl-α-D-mannopyranosyl)-3,4,6-tri-O-benzyl-α-D-mannopyranosyl]-4,6-O-ethylidene-1,2-O-isopropylidene-α-D-galacto-pyranose (13). — A solution of 2-O-acetyl-3,4,6-tri-O-benzyl-α-D-mannopyranosyl chloride¹⁴ (12; 190 mg, 0.37 mmol) in acetonitrile (1 mL) was added to a stirred mixture of 4,6-O-ethylidene-1,2-O-isopropylidene-3-O-(3,4,6-tri-O-benzyl-α-D-mannopyranosyl)-α-D-galactopyranose¹³ (10; 180 mg, 0.265 mmol) and Hg(CN)₂ (130 mg, 0.52 mmol) in acetonitrile (2 mL). The mixture was kept at 20° for 60 h, then diluted with CHCl₃ (15 mL), washed with water (2 × 15 mL), and concentrated. Column chromatography (solvent B) of the residue gave 13 (190 mg, 62.1%), $[\alpha]_D^{20}$ +42° (c 1, chloroform), R_F 0.3 (solvent B). N.m.r. data: ¹H, δ 7.18–7.39 (30 H, 6 Ph), 5.78 (d, 1 H, $J_{1,2}$ 4 Hz, H-1 of Gal), 5.50 (dd, 1 H, $J_{1,2}$ 1.75, $J_{2,3}$ 3 Hz, H-2 of Man^{II}), 2.12 (s, 3 H, Ac), 1.34 and 1.46 (2 s, 6 H, CMe₂), 1.29 (d, 3 H, J 5 Hz, CHMe); ¹³C, δ 109.4 [C(CH₃)₂], 99.3 (C-1 of Man^{II}), 98.7 (C-1 of Gal), 98.4 (HCMe), 95.4 (C-1 of Man^I), 79.8 (C-3 of Gal), 74.0 (C-2 of Man^I).

Anal. Calc. for C₆₅H₇₆O₁₇: C, 69.15; H, 6.40. Found: C, 69.13; H, 6.71.

3-O-[2-O-(2-O-Acetyl-3, 4,6-tri-O-benzyl-α-D-mannopyranosyl)-3, 4,6-tri-O-benzyl-β-D-mannopyranosyl]-4,6-O-ethylidene-1,2-O-isopropylidene-α-D-galacto-pyranose (14). — Treatment of 4,6-O-ethylidene-1,2-O-isopropylidene-3-O-(3,4,6-tri-O-benzyl-β-D-mannopyranosyl)-α-D-galactopyranose¹³ (11; 200 mg, 0.3 mmol) with Hg(CN)₂ (148 mg, 0.59 mmol) and 12 (160 mg, 0.31 mmol), as described for 13, gave 14 (220 mg, 64.7%), $[\alpha]_D^{20}$ –2° (c 1, chloroform), R_F 0.44 (solvent B). N.m.r. data: 1 H, δ 7.0–7.2 (30 H, 6 Ph), 5.63 (d, 1 H, $J_{1,2}$ 4 Hz, H-1 of Gal), 5.48 (dd, 1 H, $J_{1,2}$ 1.75, $J_{2,3}$ 3 Hz, H-2 of Man^{II}), 1.95 (s, 3 H, Ac), 1.14 and 1.25 (2 s, 6

H, CMe₂), 0.85 (d, 3 H, J 5 Hz, CHMe); ¹³C, δ 110.0 (CMe₂), 99.8 (C-1 of Man^{II}), 98.9 (C-1 of Man^I), 98.8 (C-1 of Gal), 98.3 (HCCH₃), 82.8 (C-2 of Man^I), 80.3 (C-3 of Gal).

Anal. Calc. for C₆₅H₇₆O₁₇: C, 69.15; H, 6.40. Found: C, 69.10; H, 6.68.

4,6-O-Ethylidene-1,2-O-isopropylidene-3-O-[3,4,6-tri-O-benzyl-2-O-(3,4,6-tri-O-benzyl- α -D-mannopyranosyl)- α -D-mannopyranosyl]- α -D-galactopyranose (15). — A mixture of 13 (90 mg, 0.08 mmol) in MeOH (5 mL) and 2M MeONa in MeOH (0.06 mL) was kept for 16 h at 20°, then deionised with KU-2 (H⁺) resin, filtered, and concentrated in vacuo. Column chromatography (solvent B) of the residue gave 15 (65 mg, 74.7%), $[\alpha]_D^{20}$ +54° (c 1, chloroform), R_F 0.14 (solvent B). ¹H-N.m.r. data: δ 7.15–7.36 (30 H, 6 Ph), 5.8 (d, 1 H, $J_{1,2}$ 4 Hz, H-1 of Gal), 1.28–1.48 (9 H, 3 Me).

Anal. Calc. for C₆₃H₇₄O₁₆: C, 69.61; H, 6.81. Found: C, 68.85; H, 6.80.

4,6-O-Ethylidene-1,2-O-isopropylidene-3-O-[3,4,6-tri-O-benzyl-2-O-(3,4,6-tri-O-benzyl-α-D-mannopyranosyl)-β-D-mannopyranosyl]-α-D-galactopyranose (16). — Treatment of 14 (220 mg, 0.19 mmol) as described for 13 gave 16 (197 mg, 93.2%), $[\alpha]_D^{20}$ +8° (c 1, chloroform), R_F 0.14 (solvent B). ¹H-N.m.r. data: δ7.0-7.2 (30 H, 6 Ph), 5.5 (d, 1 H, $J_{1,2}$ 4 Hz, H-1 of Gal), 0.8-1.2 (9 H, 3 Me).

Anal. Calc. for C₆₃H₇₆O₁₆: C, 69.61; H, 6.81. Found: C, 69.52; H, 6.75.

1,2,4,6-Tetra-O-acetyl-3-O-[3,4,6-tri-O-acetyl-2-O-(2,3,4,6-tetra-O-acetyl- α -D-mannopyranosyl)- α -D-mannopyranosyl]-D-galactopyranose (17). — A solution of 15 (106.6 mg, 0.095 mmol) in ethanol (10 mL) was hydrogenolysed over 10% Pd/C at 36°. The reaction was monitored by t.l.c. (solvent E). The mixture was filtered and concentrated, and the residue was treated with acetic anhydride in pyridine and then acetolysed²³ to give 17 (68 mg, 92%), $[\alpha]_D^{20}$ +61.5° (c 1, chloroform). ¹H-N.m.r. data: δ 2.0-2.4 (33 H, 11 Ac).

Anal. Calc. for C₄₀H₅₄O₂₇: C, 49.69; H, 5.59. Found: C, 49.69; H, 5.59.

1,2,4,6-Tetra-O-acetyl-3-O-[3,4,6-tri-O-acetyl-2-O-(2,3,4,6-tetra-O-acetyl- α -D-mannopyranosyl)- β -D-mannopyranosyl]-D-galactopyranose (18). — Treatment of (175 mg, 0.156 mmol) as described for 15 gave 18 (64 mg, 68.8%), $[\alpha]_D^{20}$ +38° (c 1, chloroform). ¹H-N.m.r. data: δ 1.98–2.15 (33 H, 11 Ac).

Anal. Calc. for C₄₀H₅₄O₂₇: C, 49.69; H, 5.59. Found: C, 49.54; H, 5.55.

Benzyl 3-O-benzyl-2,6-di-O-benzyl-4-O-(2,3,4,6-tetra-O-benzyl- α -D-gluco-pyranosyl)- β -D-galactopyranoside (21) and benzyl 3-O-benzoyl-2,6-di-O-benzyl-4-O-(2,3,4,6-tetra-O-benzyl- β -D-glucopyranosyl)- β -D-galactopyranoside (22). — A solution of 2,3,4,6-tetra-O-benzyl- α -D-glucopyranosyl bromide²⁴ (24; 900 mg, 1.5 mmol) in CH₂Cl₂ (2 mL) was added dropwise to a stirred mixture of benzyl 3-O-benzoyl-2,6-di-O-benzyl- β -D-galactopyranoside¹⁵ (20; 500 mg, 1 mmol), Hg(CN)₂ (500 mg, 2 mmol), molecular sieve 3 Å (1 g), and CH₂Cl₂ (3 mL). The suspension was stirred for 2 h at 20° and then filtered, and insoluble material was washed with CHCl₃ (25 mL). The combined filtrate and washings were washed with water (2 × 30 mL) and then concentrated in vacuo. H.p.l.c. of the residue gave 21 (300 mg, 28.7%) and 22 (580 mg, 57.3%). Compound 21 had [α]²⁰ +75° (c 1, chloroform),

 $R_{\rm F}$ 0.63 (solvent A). N.m.r. data: ¹H, δ 7.0–7.7 (40 H, 8 Ph), 5.12 (dd, 1 H, $J_{2,3}$ 10, $J_{3,4}$ 3 Hz, H-3 of Gal); ¹³C, δ 103.15 (C-1 of Gal), 99.2 (C-1 of Glc), 81.75, 80.7 (C-3,4 of Gal).

Anal. Calc. for C₆₈H₆₈O₁₂: C, 75.84; H, 6.31; Found: C, 75.74; H, 6.28.

Compound 22 had $[\alpha]_D^{20}$ +50° (c 1, chloroform), R_F 0.55 (solvent A). N.m.r. data: ¹H, δ 7.0–7.6 (40 H, 8 Ph), 5.34 (dd, $J_{2,3}$ 10, $J_{3,4}$ 3 Hz, H-3 of Gal); ¹³C, δ 103.4 (C-1 of Gal), 102.95 (C-1 of Glc), 84.8, 82.45 (C-3,4 of Gal).

Anal. Found: C, 75.80; H, 6.32.

Benzyl 2,6-di-O-benzyl-4-O-(2,3,4,6-tetra-O-benzyl-α-D-glucopyranosyl)-β-D-galactopyranoside (23). — A solution of 21 (180 mg, 0.167 mmol) in MeOH (7 mL) and pyridine (1 mL) was mixed with 2M MeONa in MeOH (0.09 mL) and kept for 16 h at 20°. The mixture was deionised with KU-2 (H⁺) resin, filtered, and concentrated. Column chromatography (solvent A) of the residue gave 23 (98 mg, 57%), $[\alpha]_D^{20} + 30^\circ$ (c 1, chloroform), R_F 0.29 (solvent A). ¹H-N.m.r. data: δ 7.18–7.34 (35 H, 7 Ph), 2.72 (bs, 1 H, OH).

Anal. Calc. for C₆₁H₆₄O₁₁: C, 69.58; H, 6.08. Found: C, 69.55; H, 6.0.

Benzyl 2,6-di-O-benzyl-4-O-(2,3,4,6-tetra-O-benzyl-β-D-glucopyranosyl)-β-D-galactopyranoside (24). — Treatment of 22 (300 mg, 0.28 mmol) as described for 21 gave 24 (230 mg, 84.9%), $[\alpha]_D^{20}$ -4° (c 1, chloroform). ¹H-N.m.r. data: δ 7.1-7.37 (35 H, 7 Ph), 2.64 (bs, OH).

Anal. Calc. for C₆₁H₆₄O₁₁: C, 69.58; H, 6.08. Found: C, 69.48; H, 6.09.

4-O- α -D-Glucopyranosyl-D-galactose (4). — Compound 23 (90 mg, 0.093 mmol) was hydrogenolysed over 10% Pd/C in ethanol (10 mL) and ethyl acetate (1 mL) at 36°. The reaction was monitored by t.l.c. (solvent E). The solution was filtered, the insoluble material was washed with ethanol, and the combined filtrate and washings were concentrated to give 4 (30 mg, 94.9%), $[\alpha]_D^{20} + 118^\circ$ (c1, water); Glc: Gal ratio, 1:1. For the ¹³C-n.m.r. data, see Table I.

4-O-β-D-Glucopyranosyl-D-galactose (7). — Treatment of **24** (120 mg, 0.123 mmol) as described for **23** gave 7 (40 mg, 95.2%), $[\alpha]_D^{20}$ +28.5° (c 1, water); Glc:Gal ratio, 1:1. For the ¹³C-n.m.r. data, see Table I.

Benzyl 3-O-(2-O-acetyl-3,4,6-tri-O-benzyl-α-D-mannopyranosyl)-2,6-di-O-benzyl-4-O-(2,3,4,6-tetra-O-benzyl-α-D-glucopyranosyl)-β-D-galactopyranoside (25). — Reaction of 23 (97 mg, 0.1 mmol), 12 (50 mg, 0.1 mmol), and Hg(CN)₂ (25 mg, 0.1 mmol), under conditions described for the synthesis of 13, gave, after column chromatography (solvent B), 25 (80 mg, 56.1%), $[\alpha]_D^{20}$ +46° (c 1, chloroform), R_F 0.48 (solvent B). N.m.r. data: ¹H, δ 7.1–7.4 (50 H, 10 Ph), 2.13 (s, 3 H, Ac); ¹³C, δ 103.2 (C-1 of Gal), 99.3 (C-1 of Glc), 94.3 (C-1 of Man), 81.7 and 81.2 (C-3,4 of Gal).

Anal. Calc. for C₉₀H₉₄O₁₇: C, 74.68; H, 6.50. Found: C, 74.53; H, 6.51.

Benzyl 3-O-(2-O-acetyl-3,4,6-tri-O-benzyl- α -D-mannopyranosyl)-2,6-di-O-benzyl-4-O-(2,3,4,6-tetra-O-benzyl- β -D-glucopyranosyl)- β -D-galactopyranoside (26). — Reaction of 24 (230 mg, 0.24 mmol), 12 (126 mg, 0.25 mmol), and Hg(CN)₂ (110 mg, 0.43 mmol), as described above, gave, after column chromatography

(solvent B), **26** (205 mg, 60%), $[\alpha]_D^{20}$ +15° (c 1, chloroform), R_F 0.4 (solvent B). N.m.r. data: ¹H, δ 7.1–7.45 (50 H, 10 Ph), 2.0 (s, 3 H, Ac): ¹³C, δ 103.9 (C-1 of Gal), 102.95 (C-1 of Glc), 94.4 (C-1 of Man), 84.7 and 82.8 (C-3,4 of Gal).

Anal. Calc. for ConHo4O17: C, 74.68; H, 6.5. Found: C, 74.50; H, 6.49.

Benzyl 2,6-di-O-benzyl-4-O-(2,3,4,6-tetra-O-benzyl- α -D-glucopyranosyl)-3-O-(3,4,6-tri-O-benzyl- α -D-mannopyranosyl)- β -D-galactopyranoside (27). — Deacetylation of 25 (430 mg, 0.3 mmol), as described for 23, gave 27 (320 mg, 76.7%), [α]_D²⁰ +59° (c 1, chloroform), R_F 0.24 (solvent D). ¹H-N.m.r. data: δ 7.16–7.42 (50 H, 10 Ph), 2.59 (bs, 1 H, OH).

Anal. Calc. for C₈₈H₀₂O₁₆: C, 75.21; H, 6.55. Found: C, 75.00; H, 6.60.

Benzyl 2,6-di-O-benzyl-4-O-(2,3,4,6-tetra-O-benzyl- β -D-glucopyranosyl)-3-O-(3,4,6-tri-O-benzyl- α -D-mannopyranosyl)- β -D-galactopyranoside (28). — Deacetylation of 26 (375 mg, 0.26 mmol) produced 28 (300 mg, 82.4%), $[\alpha]_D^{20} + 18^\circ$ (c 1, chloroform), R_F 0.22 (solvent D). ¹H-N.m.r. data: δ 7.0–7.5 (50 H, 10 Ph), 2.76 (bs, 1 H, OH).

Anal. Calc. for C₈₈H₉₂O₁₆: C, 75.21; H, 6.55. Found: C, 75.14; H, 6.45.

4-O- α -D-Glucopyranosyl-3-O- α -D-mannopyranosyl-D-galactose (5). — Debenzylation of 27 (108 mg, 0.08 mmol), as described above for 23, gave 5 (36 mg, 93%), $[\alpha]_D^{20}$ +149° (c 1, water); Man:Gal:Glc ratio, 1:1:1. For the ¹³C-n.m.r. data, see Table I.

4-O-β-D-Glucopyranosyl-3-O- α -D-mannopyranosyl-D-galactose (8). — Debenzylation of 28 (150 mg, 0.104 mmol), as described for 23, gave 8 (53 mg, 98.5%), $[\alpha]_D^{20}$ +71° (c 1, water); Man:Gal:Glc ratio, 1:1:1. For the ¹³C-n.m.r. data, see Table I.

Benzyl 3-O-[2-O-(2-O-acetyl-3,4,6-trι-O-benzyl-α-D-mannopyranosyι)-3,4,0-tri-O-benzyl-α-D-mannopyranosyl]-2,6-di-O-benzyl-4-O-(2,3,4,6-tetra-O-benzyl-α-D-glucopyranosyl)-β-D-galactopyranoside (29). — The coupling of 27 (220 mg, 0.153 mmol) and 12 (85 mg, 0.17 mmol) in the presence of Hg(CN)₂ (75 mg, 0.3 mmol), under the conditions described for 13, gave, after column chromatography (solvent B), 29 (250 mg, 81.3%), $[\alpha]_D^{20}$ +42° (c 1, chloroform), R_F 0.83 (solvent B). N.m.r. data: 1 H, δ 7.1–7.43 (65 H, 13 Ph), 2.1 (s, 3 H, Ac); 13 C, δ 103.0 (C-1 of Gal), 100.3 (C-1 of Man^{II}), 99.75 (C-1 of Glc), 95.2 (C-1 of Man^I), 81.3 and 81.75 (C-3,4 of Gal), 79.6 (C-2 of Man^I).

Anal. Calc. for C₁₁₇H₁₂₂O₂₂: C, 74.22; H, 6.55. Found: C, 73.85; H, 6.53.

Benzyl 3-O-[2-O-(2-O-acetyl-3,4,6-tri-O-benzyl-α-D-mannopyranosyl)-3,4,6-tri-O-benzyl-α-D-mannopyranosyl]-2,6-di-O-benzyl-4-O-(2,3,4,6-tetra-O-benzyl-β-D-glucopyranosyl)-β-D-galactopyranoside (30). — Reaction of 28 (70 mg, 0.049 mmol), 12 (25 mg, 0.05 mmol), and Hg(CN)₂ (25 mg, 0.09 mmol), as described above, gave 30 (52 mg, 53.4%), $[\alpha]_D^{20}$ +27° (c 1, chloroform), R_F 0.85 (solvent B). N.m.r. data: 1 H, δ7.0–7.4 (65 H, 13 Ph), 2.1 (s, 3 H, Ac); 13 C, δ 104.2 (C-1 of Gal), 102.65 (C-1 of Glc), 101.0 (C-1 of Man^{II}), 95.0 (C-1 of Man^I), 85.2 and 82.5 (C-3,4 of Gal), 79.5 (C-2 of Man^I).

Anal. Calc. for C₁₁₇H₁₂₂O₂₂: C, 74.22; H, 6.55. Found: C, 73.91; H, 6.48.

Benzyl 2,6-di-O-benzyl-4-O-(2,3,4,6-tetra-O-benzyl- α -D-glucopyranosyl)-3-O-[3,4,6-tri-O-benzyl-2-O-(3,4,6-tri-O-benzyl- α -D-mannopyranosyl)- α -D-mannopyranosyl]- β -D-galactopyranoside (31). — Deacetylation of 29 (250 mg, 0.133 mmol), as described for the preparation of 23, gave, after column chromatography (solvent B), 31 (180 mg, 73.6%), $[\alpha]_D^{20}$ +53° (c 1, chloroform), R_F 0.38 (solvent B). ¹H-N.m.r. data: δ 6.99–7.39 (65 H, 13 Ph), 2.39 (bs, 1 H, OH).

Anal. Calc. for C₁₁₅H₁₂₀O₂₁: C, 75.16; H, 6.54. Found: C, 74.85; H, 6.49.

Benzyl 2,6-di-O-benzyl-4-O-(2,3,4,6-tetra-O-benzyl-β-D-glucopyranosyl)-3-O-[3,4,6-tri-O-benzyl-2-O-(3,4,6-tri-O-benzyl-α-D-mannopyranosyl)-α-D-mannopyranosyl]-β-D-galactopyranoside (32). — Deacetylation of 30 (120 mg, 0.064 mmol), as described above, gave 32 (105 mg, 89.5%), $[\alpha]_D^{20}$ +28° (c 1, chloroform), R_F 0.61 (solvent B). ¹H-N.m.r. data: δ7.0-7.41 (65 H, 13 Ph), 2.41 (bs, 1 H, OH).

Anal. Calc. for C₁₁₅H₁₂₀O₂₁: C, 75.15; H, 6.54. Found: C, 74.90; H, 6.48.

4-O-α-D-Glucopyranosyl-3-O-(2-O-α-D-mannopyranosyl-α-D-mannopyranosyl)-D-galactose (6). — Catalytic hydrogenolysis of 31 (180 mg, 0.1 mmol), as described above, gave 6 (59 mg, 90.5%), $[\alpha]_D^{20}$ +127° (c 1, water); Man:Gal:Glc ratio, 2:1:1. For the ¹³C-n.m.r. data, see Table I.

4-O-β-D-Glucopyranosyl-3-O-(2-O-α-D-mannopyranosyl-α-D-mannopyranosyl)-D-galactose (9). — Catalytic hydrogenolysis of 32 (105 mg, 0.06 mmol), as described above, gave 9 (37 mg, 97.2%), $[\alpha]_D^{20}$ +70° (c 1, water); Man:Gal:Glc ratio, 2:1:1. For the ¹³C-n.m.r. data, see Table I.

Acetylation of oligosaccharides. — Acetic anhydride (1 mL) was added to a solution of the oligosaccharide (30-50 mg) in pyridine (1 mL), and the mixture was kept at 20° for 16 h and then concentrated. Column chromatography of the residue then gave the product. The following acetates were prepared in this manner.

1,2,3,6-Tetra-O-acetyl-4-O-(2,3,4,6-tetra-O-acetyl- α -D-glucopyranosyl)-D-galactopyranose (33; 55 mg, 92%), $[\alpha]_D^{20}$ +128° (c 1, chloroform), R_F 0.49 (solvent C). ¹H-N.m.r. data: δ 1.98–2.09 (24 H, 8 Ac).

Anal. Calc. for C₂₈H₃₈O₁₉: C, 49.26; H, 5.60. Found: C, 49.24; H, 5.62.

1,2,3,6-Tetra-*O*-acetyl-4-*O*-(2,3,4,6-tetra-*O*-acetyl- β -D-glucopyranosyl)-D-galactopyranose (**34**; 127 mg, 87%), $[\alpha]_{\rm D}^{20}$ +49° (*c* 1, chloroform), $R_{\rm F}$ 0.4 (solvent *C*). ¹H-N.m.r. data: δ 1.92–2.1 (24 H, 8 Ac).

Anal. Found: C, 49.21; H, 5.50.

1,2,6-Tri-*O*-acetyl-4-*O*-(2,3,4,6-tetra-*O*-acetyl- α -D-glucopyranosyl)-3-*O*-(2,3,4,6-tetra-*O*-acetyl- α -D-mannopyranosyl)-D-galactopyranose (35; 52 mg, 90.7%), $[\alpha]_D^{20}$ +74° (*c* 1, chloroform), R_F 0.33 (solvent *C*). ¹H-n.m.r. data: δ 2.0–2.19 (33 H, 11 Ac).

Anal. Calc. for C₄₀H₅₄O₂₇: C, 49.69; H, 5.59. Found: C, 49.43; H, 5.47.

1,2,6-Tri-O-acetyl-4-O-(2,3,4,6-tetra-O-acetyl- β -D-glucopyranosyl)-3-O-(2,3,4,6-tetra-O-acetyl- α -D-mannopyranosyl)-D-galactopyranose (36; 80 mg, 84%),

 $[\alpha]_D^{20}$ +37° (c 1, chloroform), R_F 0.33 (solvent C). ¹H-n.m.r. data: δ 1.98–2.20 (33 H, 11 Ac).

Anal. Found: C, 49.52; H, 5.50.

1,2,6-Tri-O-acetyl-4-O-(2,3,4,6-tetra-O-acetyl- α -D-glucopyranosyl)-3-O-[3,4,6-tri-O-acetyl-2-O-(2,3,4,6-tetra-O-acetyl- α -D-mannopyranosyl)- α -D-mannopyranosyl]-D-galactopyranose (37; 80 mg, 74.6%), $[\alpha]_D^{20}$ +70° (c 1, chloroform), R_F 0.24 (solvent C). ¹H-N.m.r. data: δ 2.1–2.17 (42 H, 14 Ac).

Anal. Calc. for C₅₂H₇₀O₃₅: C, 41.79; H, 5.58. Found: C, 41.53; H, 5.60.

1,2,6-Tri-*O*-acetyl-4-*O*-(2,3,4,6-tetra-*O*-acetyl- β -D-glucopyranosyl)-3-*O*-[3,4,6-tri-*O*-acetyl-2-*O*-(2,3,4,6-tetra-*O*-acetyl- α -D-mannopyranosyl)- α -D-mannopyranosyl]-D-galactopyranose (38; 84 mg, 94.5%), $[\alpha]_D^{20}$ +25° (*c* 1, chloroform), R_F 0.24 (solvent *C*). ¹H-N.m.r. data: δ 2.0-2.15 (42 H, 14 Ac).

Anal. Found: C, 41.49; H, 5.55.

Preparation of glycosyl phosphates. — The acetylated oligosaccharide was melted in vacuo at 56° with 10 mol of H_3PO_4 for 2 h. The mixture was then diluted with M LiOH to pH >11 and stirred overnight. The Li₃PO₄ was removed by centrifugation, and the supernatant solution was neutralised with KU-2 (Py⁺) resin to pH 7 and then subjected to ion-exchange chromatography (see above). The following glycosyl phosphates were prepared in this way.

- 3-O-(2-O- α -D-Mannopyranosyl- α -D-mannopyranosyl)- α -D-galactopyranosyl phosphate (39; 46 μ mol, 65.5%), [M] $_{D}^{20}$ +528° (water), [α] $_{D}^{20}$ +85° (c 10mM, water), $E_{Gle^{-1}-P}$ 0.68; Man:Gal:phosphate ratio, 2:1:1.
- 3-O-(2-O- α -D-Mannopyranosyl- β -D-mannopyranosyl)- α -D-galactopyranosyl phosphate (40; 31.6 μ mol, 51%), [M] $_D^{20}$ +332° (water), [α] $_D^{20}$ +54° (c 32mM, water), $E_{Glecl-P}$ 0.68; Man:Gal:phosphate ratio, 2:1:1.
- 4-O- α -D-Glucopyranosyl- α -D-galactopyranosyl phosphate (41; 33 μ mol, 74.4%), [M] $_D^{20}$ +554° (water), [α] $_D^{20}$ +121.5° (c 33mM, water), $E_{Glc^{-1}-P}$ 0.87; Gal:Glc:phosphate ratio, 1:1:1.
- 4-O-β-D-Glucopyranosyl-α-D-galactopyranosyl phosphate (42; 43.9 μmol, 60%), $[M]_D^{20}$ +330° (water), $[\alpha]_D^{20}$ +72° (c 52mM, water), $E_{Gle-1-P}$ 0.87; Gal:Glc:phosphate ratio, 1:1:1.
- 4-O-α-D-Glucopyranosyl-3-O-α-D-mannopyranosyl-α-D-galactopyranosyl phosphate (43; 24.8 μmol, 55%), [M]_D²⁰ +709° (water), [α]_D²⁰ +115° (c 12mM, water), $E_{Glo-1-P}$ 0.77; Man:Gal:Glc:phosphate ratio, 1:1:1:1.
- 4-O-β-D-Glucopyranosyl-3-O-α-D-mannopyranosyl-α-D-galactopyranosyl phosphate (44; 49.7 μmol, 64.8%), $[M]_D^{20}$ +432° (water), $[\alpha]_D^{20}$ +68° (c 48.5mM, water), $E_{\text{Glc-1-P}}$ 0.77; Man:Gal:Glc:phosphate ratio, 1:1:1:1.
- 4-O- α -D-Glucopyranosyl-3-O-(2-O- α -D-mannopyranosyl- α -D-mannopyranosyl)- α -D-galactopyranosyl phosphate (45; 35 μ mol, 54.9%), [M] $_{\rm D}^{20}$ +872° (water), [α] $_{\rm D}^{20}$ +111.5° (c 33mM, water), $E_{\rm Glc-1-P}$ 0.69; Man:Gal:Glc:phosphate ratio, 2:1:1:1.
- 4-O-β-D-Glucopyranosyl-3-O-(2-O- α -D-mannopyranosyl- α -D-mannopyranosyl)- α -D-galactopyranosyl phosphate (46; 40 μ mol, 60%), [M]₀²⁰ +508° (water),

 $[\alpha]_D^{20}$ +66° (c 33mm, water), $E_{Gic-1-P}$ 0.69; Man: Gal: Glc: phosphate ratio, 2:1:1:1. The n.m.r. data for the glycosyl phosphates 39-46 are given in Table II.

ACKNOWLEDGMENTS

The authors thank Dr. A. S. Shashkov for measuring the n.m.r. spectra, Dr. Yu. A. Knirel for helpful discussion, and Professor N. K. Kochetkov for constant interest and encouragement.

REFERENCES

- 1 C. D. WARREN AND R. W. JEANLOZ, Biochemistry, 11 (1972) 2565-2572.
- 2 V. N. SHIBAEV, Adv. Carbohydr. Chem. Biochem., in press.
- 3 L. L. DANILOV, S. D. MALTSEV, V. N. SHIBAEV, AND N. K. KOCHETKOV, Carbohydr. Res., 88 (1981) 203-211.
- 4 L. L. DANILOV, N. S. UTKINA, V. N. SHIBAEV, AND N. K. KOCHETKOV, Bioorg. Khim., 7 (1981) 1718-1721.
- 5 V. N. SHIBAEV, T. N. DRUZHININA, N. A. KALINCHUK, S. D. MALTSEV, L. L. DANILOV, V. I. TORGOV, N. K. KOCHETKOV, S. SH. ROZHNOVA, AND V. A. KILESSO, *Bioorg. Khim.*, 9 (1983) 564–565.
- 6 T. N. DRUZHININA, V. N. SHIBAEV, N. K. KOCHETKOV, S. SH. ROZHNOVA, AND V. A. KILESSO, Bioorg. Khim., 10 (1984) 1548-1551.
- N. K. KOCHETKOV, V. N. SHIBAEV, T. N. DRUZHININA, L. M. GOGILASHVILI, L. L. DANILOV, V. I. TORGOV, S. D. MALTSEV, AND N. S. UTKINA, Dokl. Akad. Nauk SSSR, 262 (1982) 1393–1397.
- 8 V. N. SHIBAEV, L. L. DANILOV, T. N. DRUZHININA, L. M. GOGILASHVILI, S. D. MALTSEV, AND N. K. KOCHETKOV, FEBS Lett., 139 (1982) 177–180.
- 9 V. N. SHIBAEV, T. N. DRUZHININA, L. M. GOGILASHVILI, N. K. KOCHETKOV, S. SH. ROZHNOVA. AND V. A. KILESSO, Dokl. Akad. Nauk SSSR, 270 (1983) 897–899.
- 10 V. N. SHIBAEV, L. L. DANILOV, T. N. DRUZHININA, V. I. TORGOV, L. M. GOGILASHVILI, AND N. S. UTKINA, Bioorg. Khim., 8 (1982) 564-566.
- 11 C. G. Hellerovist, J. Hoffman, B. Lindberg, and S. Svensson, Acta Chem. Scand., 26 (1972) 3282–3286.
- 12 V. N. SHIBAEV, T. N. DRUZHININA, A. N. POPOVA, S. SH. ROZHNOVA, AND V. A. KILESSO, Eur. J. Biochem., 101 (1979) 309–316.
- 13 V. I. TORGOV, C. A. PANOSSIAN, A. T. SMELJANSKY, AND V. N. SHIBAEV, *Bioorg. Khim.*, 11 (1985) 83–90.
- 14 T. OGAWA AND K. SASAJIMA, Carbohydr. Res., 97 (1981) 205-227.
- N. K. KOCHETKOV, V. I. TORGOV, N. N. MALYSHEVA, A. S. SHASHKOV, AND E. M. KLIMOV, Tetrahedron, 36 (1980) 1227–1230.
- 16 R. U. LEMIEUX, K. B. HENDRIKS, R. V. STICK, AND K. JAMES, J. Am. Chem. Soc., 97 (1975) 4056–4062.
- 17 N. K. KOCHETKOV, O. S. CHIZHOV, AND A. S. SHASHKOV, Carbohydr. Res., 133 (1984) 173-185.
- 18 D. L. MACDONALD, Methods Carbohydr. Chem., 6 (1972) 389-392.
- 19 L. L. DANILOV, M. F. TROITSKY, N. S. UTKINA, V. N. SHIBAEV, AND N. K. KOCHETKOV, Carbohydr. Res., 87 (1980) 141–146.
- 20 J. W. O'CONNOR, H. A. NUNEZ, AND R. BARKER, Biochemistry, 18 (1979) 500-507.
- 21 L. L. DANILOV, N. S. UTKINA, AND V. N. SHIBAEV, Bioorg. Khim., 6 (1980) 780-782.
- N. E. BYRAMOVA, L. V. BACKINOVSKY, AND N. K. KOCHETKOV, *Izv. Akad. Nauk SSSR*, *Ser. Khim.*, (1985) 1140–1145.
- 23 V. I. BETANELI, M. V. OVCHINNIKOV, L. V. BACKINOVSKY, AND N. K. KOCHETKOV, Carbohydr. Res., 84 (1980) 211-224.
- 24 L. V. BACKINOVSKY, A. R. GOMTZJAN, N. E. BYRAMOVA, AND N. K. KOCHETKOV, *Bioorg. Khim.*, 10 (1984) 79–87.